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Abstract 
Many types of pricing models incorporating different forms of demand functions have emerged in 

the past years. In an earlier work, a piecewise-defined Complementarity-Constrained Demand 

Function (CCDF) was discussed to correct certain weaknesses in commonly used demand 

functions. The authors introduced a Complementarity-Constrained (CC) pricing model 

incorporating the CCDF in that same work. However, there was a lack of numerical 

implementations therein. Hence in a separate work, we developed an algorithm using MATLAB to 

compare a generic pricing model and a CC pricing model.  Experiments were performed to 

compare the revenues from the two models for certain ranges of parameters defining the demand 

function. In this work, we conduct further numerical testing by simulating the bidding behaviours 

of different types of customers and using simulated demand data to compare the models. We find 

that the use of the CC model leads to higher revenues for certain simulated scenarios.    

 

1. Introduction 
Demand is a relationship between price and quantity demanded, with all other factors affecting 

demand being held constant. A demand function (DF) is a mathematical expression that 

approximates the demand-price relation in the real market. It depends on consumer preferences, 

relationships between different products (for example, substitutability of products), sensitivities 

of consumer demands to changes in prices, and so on.  

The literature consists of many types of demand functions derived through, for example, 

utility maximization or data fitting. Soon et al. [6] discussed different types of demand functions 

used in pricing models prior to their work and the problems with considering those functions. For 

example, linear functions are commonly used in practice due to their simplicity. However, it is 



 The Electronic Journal of Mathematics and Technology, Volume 8, Number 3, ISSN 1933-2823 

 

196 

 

positive (or zero) on a restricted set of prices, say Ω. Thus prices outside Ω are commonly 

ignored in pricing models. As for the well-known Cobb-Douglas function, the demand for a 

product reaches zero only when its price tends to infinity, which is not realistic. Hence in Soon et 

al. [6], a non-traditional way to construct the demand-price relation was discussed. Firstly, a 

reasonable function   (linear or non-linear) on a set Ω is considered. Then   is extended to all 

non-negative prices outside Ω through solving a Complementarity problem. In the process, a 

Complementarity-Constrained Demand Function (CCDF) is generated.  

 A huge volume of research on pricing models exists in the literature. See, for example, 

Bitran and Caldentey [2], and Soon [9] for a review of pricing models. As good pricing strategies 

are important to retail and manufacturing industries, in revenue management, and so on, it is 

crucial to use suitable pricing models that incorporate realistic demand functions. Thus Soon et 

al. [6] developed a model using the piecewise defined CCDF mentioned above, which was 

termed a Complementarity-Constrained (CC) pricing model.  

To make up for the lack of numerical implementations of the CC pricing model in that 

work, we have done earlier research on the CC model incorporating a suitable function  , in 

Soon et al. [7,8]. Basically, we developed an algorithm to compare a generic pricing model and a 

CC pricing model using MATLAB. Our results showed that a CC pricing model generates higher 

revenues for certain ranges of parameters defining the demand function. This motivated us to 

extend our work to conduct further investigations of the CC model.  

Initially we attempted to use real demand data collected from Amazon and ebay websites 

to compare the two pricing models. However, due to reasons which will be discussed in a later 

section, we decided instead to simulate the bidding process for products and use the simulated 

demand data for our comparisons of the two models. Different types of customer behaviours in 

the bidding process were simulated and our comparisons showed that the CC model can lead to 

higher revenues for two different combinations of customer behaviours, and with certain sets of 

lower bound constraints on prices of products. 

In the next section, we will discuss the motivation behind the CCDF in greater detail and 

illustrate the forms of the CCDF and pricing models. Following that, we examine specific 

generic and CC pricing models incorporating a particular form of   . A description of difficulties 

with using real-life data is then provided. We go on to discuss the simulation process and how 

we use the simulated data to compare two pricing models. Finally some results are shown to 

justify the use of the CC model. 

 

2. Description of a CCDF and a CC pricing model 
For clarity of exposition, we first describe the demand-price relationship for products and 

explain the motivation behind the use of a CCDF and hence a CC pricing model.  

 
2.1  Motivation behind the use of a CCDF in pricing models 

In a simple pricing model, assuming unlimited supply (or the ability to meet all demands), a 

seller will try to price his products suitably to meet customers’ demand and maximize his 

revenue. Suppose that a seller is considering offering   products. Let      represent the demand 

for the products at prices represented by a vector     
  {      |       and    represent 

a given vector of lower bound constraints on prices. A simple generic pricing model can take the 

form 
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     s.t.                     

(2.1)                          
 

In any pricing model, the choice of the function      is very important, as it should 

reflect customers’ behaviour (for example, tolerance of price increases) and preferences for 

different products. For simplicity of explanation, suppose that a seller is considering offering two 

substitutable products. If he models customers’ demand       (for product 1) and       (for 

product 2) using some generic function (for example, a linear function), it is easy to see that 

since    varies negatively with     for a fixed         ,    will turn negative at a sufficiently 

large   . Hence      only stays nonnegative on a restricted set of prices. Let such a set be 

denoted by  , that is,     {    
  |        . This means that a seller will usually consider 

pricing his products at some price     satisfying the lower bound constraints. 

However, as argued in Soon et al. [6], why should prices outside   be ignored 

completely? Indeed, it was shown in that work that it is possible to model demand at prices 

outside    As discussed therein, consider a function            for all      This function 

     can be used to model demand at all nonnegative prices. To explain how      looks like 

for    , suppose that we have a  ̅     ̅   ̅   on the boundary of  , where      ̅    and 

    ̅   . Then since     ̅   , for any     of the form         ̅   with     ̅ , we will 

have        . Such a price will be completely ignored usually. However, it is realistic to 

assume that since there is no demand for product 1 at price  ̅, the demand for product 1 at a price 

        ̅   with     ̅  will still remain at 0. So we can set        ̅       ̅   ̅  . And 

then since at price  ̅, all demand for product 1 has already shifted to product 2, the demand for 

product 2 at         ̅   should stay the same as that at  ̅. That is, the price         ̅   is 

“projected” onto the price  ̅. Thus        ̅       ̅   ̅   as well. 

In Soon et al. [6], a map        ̅ (called the projected price of  ) was introduced and 

so       (    ) as a result. This map   was defined via a nonlinear complementarity 

problem (NCP) as follows. 

 

Definition 2.1 For any     
       is defined as a solution of the       : find           

such that 

               , 

 

where                  represents                            . 

 

The authors proceeded to give the following formal definition of the CCDF. 

  

Definition 2.2 The Complementarity-Constrained Demand Function (CCDF)     
    

  is 

defined by 

 

      (    ),      for all     
   

 

where the map   is as stated in Definition 2.1.  
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With this possibility of modelling demand at all nonnegative prices, it then makes sense for a 

seller to consider all prices when trying to maximize his revenue. That is, when solving the 

pricing model (2.1), the function       should be replaced by      instead. Given some fixed 

  , we may have a scenario where a     as described above can satisfy the    constraints and 

lead to a higher revenue as compared to the case if all   had to be restricted to  , since the 

feasible set of prices to be considered is now larger. Even though this implies zero sales for one 

of the products (say product 1), it can still be beneficial for a seller to rely only on the sales of the 

other product (say product 2) if this leads to overall higher revenue for a seller. 

 

2.2  A specific generic and CC pricing model 

For simplicity, we will consider a single seller offering two products in this work. As in Soon et 

al. [7], we will choose the function 

 

            
    

 

      ,

 (2.2) 

 

for each product          . Here      ,         are some given constants, where         are 

demand parameters,     represents the own-price elasticity of demand for product    and     is 

the cross-price elasticity of demand for product   with respect to product    It is clear that     < 0 

holds for normal goods and         (or < 0) if products   and   are mutually substitutable (or 

complementary). Suppose that the products are substitutable. With     , if    is fixed, then the 

demand    goes to 0 before    approaches infinity, which seems realistic in the market. That is, 

the parameter    controls the maximum price at which demand    is zero. Note that this function 

is similar to the Cobb-Douglas demand function, but the presence of    corrects the problem as 

discussed earlier. Our choice of   is also similar to the functions considered  by Chevalier and 

Goolsbee [3], Ghose and Sundararajan [4], and Ghose et al. [5] to model demand for online 

products.  

Using the function   given in (2.2), the model (2.1) becomes 

 

           (    
     

      )      (    
     

      )   

  s.t.           
     

        
 (2.3) 

       
     

           

               

                
 

Supposing that we incorporate the CCDF into model (2.1), that is, non-negative prices outside of 

  are allowed, then we have the model 

 

                    

       s.t.            
             

Using Definitions 2.1, 2.2 and the function in (2.2), this model becomes 
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         (    
     

      )      (    
     

      )   

    s.t.           
     

                             

(2.4) 

           
     

                      

             

              
  

Our aim is then to compare the revenues obtained using models (2.3) and (2.4), for given 

parameter values      ,    ,    , for            , and lower bound values         . It is easy 

to see that the model (2.4) is reduced to (2.3) if we set     . Hence the revenue obtained 

through model (2.4) is always at least as high as that from model (2.3). We used MATLAB to 

program an algorithm to solve both models (2.3) and (2.4) in Soon et al. [8]. The reader can refer 

to therein for details.  

Though existence of solution to the CC pricing model has been shown previously, it is not a 

simple task to prove analytically that the CC model can always ensure higher revenues. This 

paper focuses on using parameters defining   obtained through simulation studies to compare the 

two models.   

 

3. Real life demand and simulation of demand 
We first discuss some avenues of obtaining real demand data and the difficulties we found 

associated with these avenues. Then we move on to describe our simulation process and the 

different types of customer behaviour that we simulated.  

 

 
3.1  Difficulties with obtaining real life demand data 

We attempted to obtain real-life demand data through Amazon and e-bay. However we realised 

that there were several problems. For example, Chevalier and Goolsbee [3] developed a method 

to convert sales ranks to sales quantities on Amazon.com and BN.com, and then estimated the 

price sensitivities of demands for books online. Data was taken over three months in 2001. They 

observed major price changes by the two sellers. We wanted to use a similar approach but we 

observed very little changes in prices of products over time. In addition, there may be too much 

“noise” and censoring of data. 

Zhang et al. [10] constructed a mathematical model to extract the demand-price 

relationship for products using online auction bid data. They used bidders’ bid histories on 

auction websites like e-bay as data. They also estimated the bids that were truncated (unrecorded 

or censored). Adams and Bivins [1] analysed data from e-bay auctions for three types of 

telescopes over eight weeks, to estimate the demand for the telescopes. Their results suggested 

that demand was very elastic (that is, sensitive to changes in prices).  

Initially we did collect ebay auction bid data for two cameras (Nikon and Canon) that 

probably caters to the same pool of customers, as they are often compared in camera reviews. 

The bidding amounts placed for each camera by different bidders were collected over one month. 

The bid prices were grouped over several intervals and the number of bids for each interval was 

used as an indication of the demand for each camera at the median price of the respective 

interval. However, our analysis of the data collected did not lead to promising results. For certain 

data, demand showed to be inelastic, and then for some other data, great fluctuations of graphs of 
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demand versus price were found. Hence we could not use the data to generate a reasonable 

demand function for our purpose.  In addition, we felt that it is hard to know all potential buyers 

from the data and we have to assume that each person bids his valuation.  

Besides attempting to obtain demand data through websites, it is possible to use customer 

surveys, conduct experiments through discounts offered for limited time and use real transaction 

data. However, these methods can be costly, time-consuming, difficult to obtain and hard to 

interpret (for transaction data). Considering all these difficulties with obtaining real demand data, 

we decided to simulate demand for this work.  

 

3.2  Simulation of bidding process 

We simulated different types of customer behaviour in the bidding process for two products 

using programs written on MATLAB. The two products are assumed to be substitutable for each 

other and cater to the same pool of customers. For each simulation study, we assumed ten 

categories of customers corresponding to ten different bid tolerances (indications of the 

maximum price they are willing to accept for any product). Let   (      ) be an index that 

denotes a customer category, where a larger   value refers to a customer with a larger maximum 

price tolerated. Note that this direct relationship between   and maximum price is used as the 

increment in price is given as an increasing function of    (see below). Then the basic steps of the 

simulation process are: 

 

1. The current price is  . 

2. A bidder is randomly chosen from ten types of customers using a uniform distribution 

and so an ordered pair (max price,  ) is obtained. 

3. A bid price is calculated based on the bidder chosen: price =     , where      
 

   
. 

4. If the bid price is not higher than the bidder’s maximum price, the bid is accepted. 

5. An accepted bid leads to the new current price to be equal to the bid price. 

 

On top of the above standard procedure in all simulation studies, our programs 

incorporate additional assumptions on customer behavior for the different studies as follows: 

 

 In study 1, a bidder is assumed equally likely to consider product 1 or product 2.  

 In study 2, a bidder goes for the product with the lower price. 

 In study 3, there are two types of bidders – one who only considers the product with the 

lower price, and one who only considers product 1.  

 In study 4, there are two types of bidders. The first type considers the product with the lower 

price. The second type prefers product 1 and his bid is accepted if the price of product 1 is 

not higher than that of product 2 by more than 20% of his maximum price (and is within his 

maximum price). 

 In study 5, on top of the assumptions made in study 3, there is an extra assumption that 

should the price of product 1 exceed his maximum price, the bidder who prefers product 1 

opts for product 2 whenever its price is within his maximum price. 

 In study 6, on top of the two types of bidders as described in study 3, there is a third type 

who only goes for product 2. 

 In study 7, there are three types of bidders. The first type only considers the product with the 

lower price. The second type prefers product 1 and his bid is accepted if the price of product 

1 is not higher than that of product 2 by more than 20% of his maximum price. The last type 
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of bidders prefers product 2 and his bid is accepted if the price of product 2 is not higher than 

that of product 1 by more than 20% of his maximum price.  

 In study 8, there are three types of bidders. The first type only considers the product with the 

lower price. The second type prefers product 1 but opts for product 2 if the price of product 1 

exceeds his maximum price but the price of product 2 does not. The third type prefers 

product 2 but opts for product 1 if the price of product 2 exceeds his maximum price but the 

price of product 1 does not. 

 

For clarity of exposition, we present a flowchart illustrating our simulation study 7 in Figure 1. 

The MATLAB program written for the same simulation study is also provided in the appendix.  

 

4. Use of simulated demand data to compare pricing models 
Our initial thought in this part of the project was to allow a user to input his chosen simulated 

scenario (out of eight possibilities), the different bid tolerance levels and other parameters; and 

then provide the user with an output of estimated function   and optimal prices and revenues of 

the two pricing models. However in our implementation, after collating the bids from a simulated 

study, we needed to transfer the data to EXCEL to obtain the parameters governing the function 

 , as we could not do so using MATLAB. That is, there was a “break” in the procedure due to 

the use of Excel. As a user may not be familiar with the process of data management using 

MATLAB combined with EXCEL, we did not proceed with our initial aim. 

 

4.1 From simulation to comparison of models 

We now describe the procedure of using the bids collected from each simulation study to 

compare the revenues of pricing models. For each product, the successful bids were first collated 

over intervals of prices to represent “demand”. The median of each interval represented a price 

level. We then used Excel “data analysis” tool to carry out multivariable nonlinear regression 

analysis of our bid data, to obtain the parameter values      ,     and     that define the function 

depicted in (2.2).  

Finally, these parameter values were fed into our MATLAB program (see Soon et al. [8]) 

to compare the revenues of the two pricing models, over different lower bound values. The 

reader may refer to Figure 2 for a flowchart that outlines the whole process from simulation to 

the comparison of revenues from the two pricing models. 

 
4.2 Some numerical results 

Though we conducted many simulation studies as discussed above, we only present the results of 

two studies in this paper as they lead to more significant results. Note however, that all studies 

(with the exception of study 6) do showcase that CC model is better for certain sets of parameter 

values. For each of the studies presented below, the parameters obtained from certain runs of the 

corresponding simulation program are provided. The parameters from each run were fed into our 

MATLAB program to generate the resulting optimal prices and revenues for the two pricing 

models (for different sets of lower bound values as given below). Note that as discussed in 

Section 2.2, the revenue obtained from the CC model is always at least as high as that obtained 

from the generic model. 
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Figure 1: Flowchart explaining the scenario for simulation study 7 
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Figure 2: Flowchart illustrating the process from simulation to revenue comparison. 
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The results in the tables show significant improvements on optimal revenues at times when CC 

model is used (as shown by the highlighted values). This shows the superiority of the CC model 

over a generic one, not just theoretically, but in realistic (simulated) situations.  

 

Study 3 – Summary of results 

 

Run 1’s parameters:  

11a −2.69464, 
12a  1.67961, 

1c  300842, 
1k  60, 

21a  7.06666, 
22a −8.04625, 

2c  233450, 
2k  60. 

 

Table 1: Comparisons between the two models for Run 1’s parameters. 

 
 

    

 

    

Generic Model CC Model 

1P  
2P  Revenue 

1P  
2P  Revenue 

1800 1000 1800 1045.94 12408414 1800 1000 13982248 

1900 1100 1900 1140.72  9848982 1800 1000 10850875 

2000 1200 2000 1238.56 7905557 2000 1200 8603216 

2100 1300 2100 1339.41 6408965 2100 1300 6943932 

2200 1400 2200 1443.19 5241624 2200 1400 5689526 

2300 1500 2300 1549.87 4320377 2300 1500 4721645 

2400 1600 2400 1659.40 3585468 2400 1600 3961477 

 

 

Study 7 – Summary of results 

 

Run 1’s parameters:  

11a −2.48558, 12a  1.625796, 1c  156645.2, 1k  255, 

21a  0.286548, 22a −1.39228, 2c  456256.4, 2k  68. 

 

Run 2’s parameters: 

11a −1.28132, 12a  0.453397, 1c  127719, 1k  255, 

21a  0.01, 22a −1.13877, 2c  521378.4, 2k  68. 

 

Run 3’s parameters: 

11a   -3.11225, 12a  2.27102, 1c  140820, 1k  255, 

21a  0.01, 22a −1.14067, 2c  524133, 2k  68. 
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Table 2: Comparisons between the two models for Run 1’s parameters. 

 
 

    

 

    

Generic Model CC Model 

1P  
2P  Revenue 

1P  
2P  Revenue 

2300 1700 2300 2756.83 36072 2300 1700 92809 

2300 1800 2300 2756.83 36072 2300 1800 83583 

2300 1900 2300 2756.83 36072 2300 1900 74514 

2300 2000 2300 2756.83 36072 2300 2000 65585 

2300 2100 2300 2756.83 36072 2300 2100 56780 

2300 2200 2300 2756.83 36072 2300 2200 48088 

2300 2300 2300 2756.83 36072 2300 2300 39496 

 

 

 

Table 3: Comparisons between the two models for Run 2’s parameters. 

 
 

    

 

    

Generic Model CC Model 

1P  
2P  Revenue 

1P  
2P  Revenue 

1900 1800 1900 2754.56 69594 1900 1800 76211 

2000 1900 2000 2755.80 36267 2000 1900 67964 

2000 2000 2000 2755.80 36267 2000 2000 59801 

2000 2100 2000 2755.80 36267 2000 2100 51714 

2100 2000 2100 2756.98 3425 2100 2000 59801 

2100 2100 2100 2756.98 3425 2100 2100 51714 

2100 2200 2100 2756.98 3425 2100 2200 43694 

 

 

 

Table 4: Comparisons between the two models for Run 3’s parameters. 

 
 

    

 

    

Generic Model CC Model 

1P  2P  Revenue 
1P  2P  Revenue 

2400 1600 2400 2736.69 40840 2400 1600 91146 

2400 1700 2400 2736.69 40840 2400 1700 82736 

2400 1800 2400 2736.69 40840 2400 1800 74430 

2400 1900 2400 2736.69 40840 2400 1900 66216 

2400 2000 2400 2736.69 40840 2400 2000 58083 

2400 2100 2400 2736.69 40840 2400 2100 50025 

2400 2200 2400 2736.69 40840 2400 2200 42032 
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Figure 3: Optimal  ̂ outside Ω and   ̂ on boundary of Ω 

 

We can verify that in all the comparisons above, the CC model provides better revenues 

due to the following scenario. Let  ̂ be the vector where     ̂  = 0 and  ̂      (see Figure 3). 

Then with       ̂  , the optimal solution for problem (2.4) is   ̂             and  ̂  as 

defined. The corresponding optimal revenue is then simply          ̂  . However, the optimal 

price vector for the generic model (2.3) is restricted to the shaded region in Figure 3 and leads to 

lower optimal revenue. 

Though it would be interesting to provide insight as to why studies 3 and 7 led to 

significantly better results for the CC model as seen above, we are unable to do so as it is not 

possible to find a direct relationship between the parameters found and the simulated behaviours. 

In addition, the possibility of having a situation as depicted in Figure 3 depends on the entire 

combination of parameters defining the function   and the given lower bound values. Thus the 

point of the different simulation studies is to obtain parameters based on realistic scenarios, and 

what we have done is to provide some possible cases where the CC model is better.  

The programs written for the above two simulation studies can be downloaded under 

“Programs and Publications  Simulation of bids” from http://math.nie.edu.sg/wmsoon/price/. 

Note however, that Studies 3 and 7 above correspond to Studies 1 and 2 respectively in the given 

website. In addition, the reader may go to the same website under “Programs and Publications  

Comparison of two pricing models” to obtain the program used to compare the revenues of the 

two models. 

 

5. Conclusion 
A pricing model can be used to help a seller price the products to be sold to customers. In order 

to maximize the revenue that can be possibly obtained, a seller needs to be careful with the 

choice of demand function form that reflects customers’ responses to changes in prices of 

different products. Once the form of demand function is chosen, it is then important to consider 

the demand and price elasticity parameters that define a demand function. In a bid to compare 

the generic and CC pricing models, we have considered many different sets of parameters 

defining the demand functions and lower bound values on prices in earlier work. However, those 

 ̂ 

    0 

 ̂ 

   

    

   

      = 0 

      = 0 

http://math.nie.edu.sg/wmsoon/price/
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chosen parameters did not result from any approximation to real demand. Though we are not 

able to use real data in this work, our simulations emulate different types of customer behaviours 

and attempt to provide more reasonable average estimates of demand parameters. This enables us 

to make better comparisons of the pricing models. Our results show that the use of CC model 

should be encouraged as it can lead a seller to achieve better revenues as compared to a generic 

model.   
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Appendix (Program for simulation study 7) 

 
clc;  

global BP;           % Bid Prices 

minbid = 100;       % minimum bid 

maxbid = 1600;      % maximum bid 

N = 300;           

CustProp = [1/3 2/3 1.0]; 

BT=[250 500 750 1000 1250 1500 1750 2000 2250 2500]; % Bidder tolerance 

BP=zeros(2,N); 

BP(1,1)=minbid;     % set minimum bid for Product 1 

BP(2,1)=minbid;     % set minimum bid for Product 2 

k1=1;               % bid number for Product 1 

k2=1;               % bid number for Product 2 

rand('state',sum(100*clock)); 

randn('state',sum(100*clock)); 

 

for i=1:N 

  k1=k1+1; 

  k2=k2+1; 

   

  % determine tolerance (same for both) 

  r=ceil(rand()*10); 

  b=BT(r); 

 

  % get current price of product 1 

  p=BP(1,k1-1); 

  % get current price of product 2 

  q=BP(2,k2-1);  

   

  % calculate increments (same only when p and q are equal) 

  dp = p*r/200; 

  dq = q*r/200; 

   

  % calculate new price of product 1 

  p1 = p + dp; 

  % calculate new price of product 2 

  q1 = q + dq;     

      

  % Generate a random number s 

  s=rand(); 

   

  % Decide whether customer type is  

  % no preference (considers cheaper of the two)  

  % or preference for product 1 

  % or preference for product 2 

  if s < CustProp(1) 

   

    % considers cheaper of the two 

    % case 1: p1 and q1 are equal 

    % randomly choose product 1 or 2, provided within tolerance 

    if (p1 == q1) 

      s = rand(); % generate a random number 

      if (s < CustProp(1)) % consider product 1 

        if (p1 <= b) % price of product 1 within tolerance amount 

          BP(1, k1)=p1; % make a successful bid 
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          file_1 = fopen('product1.txt','a+'); 

          fprintf(file_1,' %2d   %6.2f \n',1,p1); % write to file 

          fclose(file_1); 

          k2=k2-1; % Must remember to decrement other product's counter 

        else 

          k1=k1-1; % Must remember to decrement 

          k2=k2-1; % both counters; no bid is made, go to next customer 

        end 

      else % consider product 2 

        if (q1 <= b) % price of product 2 within tolerance amount 

          BP(2, k2)=q1; % make a successful bid 

          file_2 = fopen('product2.txt','a+'); 

          fprintf(file_2,' %2d   %6.2f \n',2,q1); % write to file 

          fclose(file_2); 

          k1=k1-1; % Must remember to decrement other product's counter 

        else 

          k1=k1-1; % Must remember to decrement 

          k2=k2-1; % both counters; no bid is made, go to next customer 

        end 

      end 

    elseif (p1 < q1) % case 2: p1 < p2 

      if (p1 <= b) % price of product 1 within tolerance amount 

        BP(1, k1)=p1; % make a successful bid 

        file_1 = fopen('product1.txt','a+'); 

        fprintf(file_1,' %2d   %6.2f \n',1,p1); % write to file 

        fclose(file_1); 

        k2=k2-1; % Must remember to decrement other product's counter 

      else 

        k1=k1-1; % Must remember to decrement 

        k2=k2-1; % both counters; no bid is made, go to next customer 

      end 

    else % case 3: p2 < p1 

      if (q1 <= b) % price of product 2 within tolerance amount 

        BP(2, k2)=q1; % make a successful bid 

        file_2 = fopen('product2.txt','a+'); 

        fprintf(file_2,' %2d   %6.2f \n',2,q1); % write to file 

        fclose(file_2); 

        k1=k1-1; % Must remember to decrement other product's counter 

      else 

        k1=k1-1; % Must remember to decrement 

        k2=k2-1; % both counters; no bid is made, go to next customer 

      end 

    end 

  elseif r < CustProp(2) % preference for product 1 

 if (p1 <= b) & (p1 - q1 <= 0.2*b) % price of product 1 within tolerance 

amount and not much higher than product 

2 

       BP(1, k1)=p1; % make a successful bid 

       file_1 = fopen('product1.txt','a+'); 

       fprintf(file_1,' %2d   %6.2f \n',1,p1); % write to file 

       fclose(file_1); 

       k2=k2-1; % Must remember to decrement other product's counter 

     else 

       k1=k1-1; % Must remember to decrement 

       k2=k2-1; % both counters; no bid is made, go to next customer 

     end 

  else % preference for product 2 
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     if (q1 <= b) & (q1 - p1 <= 0.2*b) % price of product 2 within tolerance 

amount and not much higher than product 1 

       BP(2, k2)=q1; % make a successful bid 

       file_2 = fopen('product2.txt','a+'); 

       fprintf(file_2,' %2d   %6.2f \n',2,q1); % write to file 

       fclose(file_2); 

       k1=k1-1; % Must remember to decrement other product's counter 

     else 

       k1=k1-1; % Must remember to decrement 

       k2=k2-1; % both counters; no bid is made, go to next customer 

     end 

  end 

end 

 

fprintf('Final Price for Product 1 = %6.2f \n',BP(1,k1)); 

fprintf('Final Price for Product 2 = %6.2f \n',BP(2,k2)); 

 

 


